クマシの tun 状態における環境ストレス耐性
茨城県立水戸第二高等学校
若林果実子（2年）、海老沢聡美（2年）、星浩一

1. はじめに
クマシは緩歩動物門 (Tardigrada) に属する体長 1mm 以下の動物である。クマシはクリプトビオシス状態 (仮死状態、tun 状態) になり極度の環境ストレス (温度変化や圧力変化) にも耐えることができる。このとき、通常は 85％を占める水分を tun 状態では 3％まで減らす。

2. 動機
有機溶媒を用いた実験の予備実験として水 (蒸留水) を滴下した際にクマシが蘇生しなかった。

3. 目的
tun 状態のクマシに水を滴下した時全個体蘇生しない理由を解明する。

4. 実験
（I）4 ヶ所 (地図参照) から採取し蒸留水を

滴下し蘇生率を調べる。

（II）乾燥速度を 3 段階に分けて蘇生率を調べる。

（スライドガラス、小シャーレ、小シャーレ + ふた）

4. 結果

（I）場所によって蘇生率の違いがみられた。 （II）乾燥速度が遅いほど蘇生率が高い傾向が

みられた。


5. 考察

（I）種類の違いによるもの。

（II）コケが水分を吸収しゆっくり乾燥するため

小シャーレ + ふたを用いたことで

自然状況の乾燥速度に近づいた。

6. 今後の展望

苔の中の乾燥速度を調べ、乾燥速度を自然状況に近づけ蘇生を試みる。

生物 5-1
1、目的
ダンゴムシは暗い場所を好む性質がある。そこで、ダンゴムシの光に対する反応を調べた。

2、実験方法
下図のような箱を作り、半分(箱の黒部分)には蓋をし、影を作る。もう片側(箱の白部分)にダンゴムシを10匹入れ、上から白、赤、緑、青の4色のそれぞれの色の光を当て一定時間放置した時に、光を避け、影になった部分に移動する個体の数を計測する。

3、結果
[15分放置した場合]
<table>
<thead>
<tr>
<th></th>
<th>光</th>
<th>影</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>緑</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>赤</td>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>青</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
※その他…箱外に逃亡したもの

[30分放置した場合]
<table>
<thead>
<tr>
<th></th>
<th>光</th>
<th>影</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>緑</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>赤</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>青</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>白</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

4、考察
今回の実験においては、ダンゴムシが光を避ける反応は見られなかった。

5、結論
今回の実験で、ダンゴムシが光を避けるという明確な反応が見られなかったのは、実験に用いた箱がダンゴムシの生息している環境と異なり、ダンゴムシが警戒したためと考えられる。実験の装置を工夫し、さらに個体数を増やして実験を行っていきたい。

6、参考文献
「わが家の虫図鑑」近藤 繁生 著 トンボ出版
「ダンゴムシに心はあるのか 新しい心の科学」森山 徹 著 PHP研究所
ナミテントウは強い虫？ ～捕食性テントウミ幼虫の飼育性と落下行動～
常総学院高等学校
村田 鳳志（2年）

1. 研究背景 生物農薬として欧米に導入されたナミテントウは、その後生息地域を爆発的に広げ欧米在来のテントウミを食らっている。しかし原産国日本では特に問題となっていない。

2. 関連研究 私は以前、日本在来の捕食性テントウミ3種（ナミテントウ、ナナホシテントウ、ヒメカメノコテントウ）の行動内捕食（捕食者同士の食い合い）を調べ、ナミテントウの捕食能力が高く他のテントウミの存在を誇る可能性があること、それに対し他のテントウミは、落下行動など逃げ行動を余儀なくされていることを明らかにした。しかし「弱い」とテントウミの方が「強い」ナミテントウよりも優位な点があるのではないかと考え、ナミテントウにも「弱点」があるはずだという仮説を立て、今回の実験を行った。

3. 実験[1] 3種類のテントウミ幼虫の飼育性について捕食を指標に調べた。その結果、3種類のアブラムシ中4種がナミテントウ幼虫の捕食として逃げなかった（グラフ1〜3）。このことから、ナミテントウは何でも食べるわけではない、つまりこれは「弱点」であると考えられる。

4. 実験[2] 3種のテントウミ各齢幼虫の落下行動を調べたところ、他2種と比べナミテンクトウは幼虫期全体を通して落下行動をとらない傾向があった。このことから、ナミテントウの幼虫は生まれたときから落ちにくい習性を持っていることが分かった（グラフ4）。次に空腹状態のナミテントウの終齢幼虫16頭と各種テントウミの1齢幼虫15頭を、落下行動をとることができ3次元の空間においてその行動を観察したところ、ナナホシテントウとヒメカメノコテントウの1齢幼虫は半数が落下してその場で捕食されることを回避したが、ナミテントウはすべてが落下せず捕食された（グラフ5）。このことから、ナミテントウの「落ちない習性」は自身が若齢幼虫の場合は捕食される可能性を高める、つまりこれは「弱点」であると考えられる。

5. 結果 実験[1][2]の結果から、ナミテントウには「弱点」もあると言える。

生物5-3
1. 目的
コガネムシ科の昆虫の角と目には負の相関関係があると知り、日本のカブトムシで本当かどうかを確かめようと思った。

2. 方法
実験1: ヤマトカブトムシの雄の角と目を計測し、負の相関関係があるかを確かめる。
実験2: ヤマトカブトムシの雄と雌の目と前肢を計測する。

3. 結果
実験1: 目と角のサイズには相関関係は見られない。
実験2: 雌は目と角のサイズに正の相関関係がある。雄では相関がみられないので人間の目が見られない。

4. 考察
カブトムシの雄には相関関係がみられなかったが、雌には相関関係がみられたので、これには雌が角を持たないことが関係している可能性がある。

5. 結論
今回の実験では、あまり成果が出なかったが、まだカブトムシの雄に負の相関関係の可能性が残っているので、これからは数を増やし、実験の精度をあげていきたい。

6. キーワード
ヤマトカブトムシ 相関関係 コガネムシ科
ショウジョウバエにタバコの煙を与えた際の睡眠量の変化

若狭学園高校学園

宮崎つぐみ（2年） 担当教員 田代淳一

【動機】
ショウジョウバエとヒト、こんなにも違った生物の間に多くの共通点があることに興味を持った。そのためでも研究が進んでいる「睡眠」を注目し、社会で問題視されている「タバコ」の煙との関係を調べようと考えた。

【研究目的】
本研究は、ショウジョウバエにタバコの煙を与えた際の睡眠量の変化を測定し、タバコの煙がショウジョウバエに与える影響を明らかにすることを目的とした。私は、タバコの煙を与えることによってニコチンがショウジョウバエのアドレナリンの分泌を促し脳が覚醒して睡眠量が上がるという仮説を立てた。

【研究内容】
実験方法：野生型ショウジョウバエ Canton-S 雄雌各 16 匹ずつを、活動量を測定する「赤外線活動記録装置」に入れ、タバコの煙を 10 月 28 日 14:30 から 5 分間流し、タバコの煙を入れる前数日の睡眠量とタバコの煙を入れた直後の睡眠量、タバコの煙を入れた後の数日の睡眠量を比較した、また、5 分という時間は作業装置を使って事前実験を行い考えた結果である。
実験結果：一日単位または数日単位でみた場合、睡眠量に大きな変化は見られなかった。だが半日単位でみた場合の結果は上述した睡眠量が上がっていた。（図2）またタバコの煙を流した直後の 3:00 付近の睡眠量が雄雌ともに上がっていた。（図 3,4）

【考察】
私が最初立てた仮説とは正反対の結果が出たのは以下のような理由と考えられる。
①飲酒によってショウジョウバエが気絶した状態になった。
②ニコチンより毒性の強い物質が傷つけ。あるいは流し時間が短く、ニコチンが働く領域に達せず、他の睡眠量を増やす物質が作用した。
③ニコチンの量が多くアドレナリンの分泌を促す作用よりニコチン自体の毒性が強く反応した。

図 1 雄倉間睡眠量
図 2 雄部分睡眠量
図 3 雄部分睡眠量
これらを検証するために、次のような実験が考えられる。
① 本実験と同じ条件で煙を流し、気絶しているかを目で見て確認する。（考察①の検証）
② タバコの煙を流す時間を長くする。（考察②の検証）
③ ニコチンの量を少なくする。（考察③の検証）
ギフチョウの人工低温による羽化の有無
文京学院大学女子高等学校
土谷七虹（2年）、武村水月（2年）、国沢奈美（2年）、佐久間菜（2年）
田辺未来（2年）、西川里由（2年）、丸山莉乃（2年）
担当教員：渡辺鉄男

《実験機》アゲハ蝋は年に数回成虫になるが、何故ギフチョウは年に一回しか
成虫にならないのか疑問を持ったため。
ギフチョウとは…5月中旬頃から蛹になり、越冬し翌年の春に羽化する日本固有的チョウ。

《実験テーマ》パーキリゼーションによって羽化するか。

《実験方法》人工低温させる蛹を2℃に設定した冷蔵庫に入れ、一ヶ月放置し常温に戻した。
その後、一ヶ月毎に普通に飼育した蛹と、冷蔵庫に入れた蛹を解剖し成長の違いを観察した。

《実験材料》冷蔵庫に入れた蛹（4匹）、普通に飼育した蛹（4匹）メス、ピニセット、解剖板、柄付き針

《実験結果》
＊0ヶ月目
普通に飼育した蛹→脂肪のみ
普通に飼育した蛹→脂肪のみ

＊1ヶ月目
冷蔵した蛹→外見、頭部、触角、目、足、翅（鱗粉なし）、脂肪、赤い玉（生殖器だと考察した）
普通に飼育した蛹→外見、頭部、触角、目、足、翅（鱗粉なし）、脂肪
翅、目は柔らかかった

＊2ヶ月目
冷蔵した蛹→外見、頭部、触角、目、足、翅（鱗粉なし）、脂肪
普通に飼育した蛹→外見、触角、目、足、翅（鱗粉なし）、脂肪

《まとめ》
＊1ヶ月目より2ヶ月目のほうが成長は遅かった。
→ディパーカリゼーション%が起こったと考察した
※春化処理の後に一時期高温にさらされると春化処理の効果が失われること。

＊自然界における冬の気象条件（気温・期間）を満たすことができなかった為、成功しなかったと考えられる。

＊蛹の内部では幼虫の体が一部溶解し、脂肪→体組織→触角、眼→脚の順に再構築されたと思われる。

《今後》
＊4月頃の羽化を待つ。
＊普通の蛹と冷蔵庫に入れた蛹に見た目的変化はあるか確認する。

生物5－⑥
ダンゴムシの交換性転向反応に関する研究
茨城県立緑岡高等学校
秋生 萌絵香(2) 木村 諒(2) 松島 羽佳(2) 塚野 武史

1 はじめに
無脊椎動物に見られる行動の一つに交換性転向反応がある。事前の転向反応に対して逆方向に転向する反応である。1950年代からオカダンゴムシなどで広く研究されている。そして私たちも、自分たちの道を見失った迷路を作り、親・子のダンゴムシで交換性転向反応に違いがあるかどうかを検証した。また、自然界の光と交換性転向反応との関係がどのようにあるかを検証した。そして、ダンゴムシの繁殖についても併せて報告する。

2 実験方法
①強制交換転向反応実験
迷路第1号は写真1のように作った。この迷路ははじめ、強制的に交換性転向反応を示させてその後交換性転向反応を示すかどうかを観察した。ダンゴムシは外から採取した野生のものをとムシ標で孵化させた人工飼育のダンゴムシを使用した。個体差は考えないものとする。
②交換性転向反応の確認（光の反応）
迷路第2号は、写真2のように作った。外から採取してきた野生のダンゴムシがどの迷路に入れるか、個体差を考えず、交換性転向反応を調べた。その他の迷路方に関しては交換性転向反応を示していないということになる。写真3は三原色光源で、可視光線での反応を観察するために作成した。なおこの実験は途中なので今後進めていく。

写真1 写真2 写真3

3 実験結果
①交換性転向反応を示した回数は写真1の迷路を用いて、
野生のダンゴムシ…136回中 84回、成功率 63.64%
人工飼育のダンゴムシ…136回中 34回、成功率 25.00%

4 まとめと今後の課題
人工飼育のものと野生のものを成功率で比較すると、野生のもののが成功率は高かった。これより、野生のものはすでに一定の学習をし、大きさの違いも一つの要因として考えられる。今後は、写真2・3の装置を活用していくことが挙げられる。

生物5－7
モンキチョウの鱗粉の謎を解く!!
文京学院大学女子高等学校
吉河 楓（2年） 担当教諭 大杉 美貴

【目的】
蝶の翅の模様に興味を持ち、翅について調べていたところ鱗粉が模様を形成しているのではないかと考えられた。鱗粉について理解を深めるため、本研究では観察する箇所を前翅の特定の3箇所に定めて電子顕微鏡を用いて観察し、10枚の鱗粉の縦と横の長さを測定した。

【方法】
(1) モンキチョウの♂、♀個体を用意し、それぞれをNO.1～NO.6とした。
(2) 観察する箇所を基部、先端上部、先端下部とし、それぞれを①、②、③とした。(図1)
(3) ①～③の試料を蒸発後、電子顕微鏡で観察し、肉眼で最も大きいと判断した鱗粉を電子顕微鏡のツールを使い縦と横の長さを計測した。
(4) 250倍で全ての画像を保存し、平均値を出しグラフ化した。

【結果】
個体別、各部位における鱗粉の大きさの平均値。(図2)

【考察】
(1) NO.4～NO.6より、結果がほぼ一致していることから、鱗粉の大きさは箇所によって異なり「①<②<③」という関係が成り立つと考えられた。
(2) グラフより、①の形状は、縦と横の長さがほぼ等しく短いことから小さい円形。②は横が短く縦が長いことから楕円形を示したような形。③では横の長さは②とほぼ変わらないが、縦が倍近く長いことから、限りなく針にするような形。
(3) NO.1～NO.3で異なる結果が出たのは、初めての電子顕微鏡による作業だった為で、②、③の箇所が上手く採取できていなかった為だと考えられる。
(4) NO.4～NO.6の観察の際、②、③では鱗粉の大きさに急激な変化が見られた。
(図3はNO.4の②、③)

(5) (4)より、No.4～No.6の内側の鱗粉の計測、及びグラフ化を行ったところ、結果のNO.2とNO.3の②、③とほぼ一致するグラフになった。よって、NO.2とNO.3の②、③では最端部を採取できなかったと考えられた。

【本研究によって生じた仮説】
(1) ①、②、③の結果から、部位によって大きさが大きく異なっていることが分かった。
(2) また、前肢中央部を④しデータを採取した結果、①と②が混在しているように見えた。
(3) 細長い鱗粉になるほど、先端部の切れ込みの数が少ない傾向がみられた。
(4) No.1-④では毛のようなものが混ざっていた。
以上のことより、「鱗粉は毛が変化したものではないか。」という仮説が立てられた。

生物5→③